SAR Images Compression via Independent Component Analysis and Compressive Sampling

نویسندگان

  • Alessandra Budillon
  • Gilda Schirinzi
چکیده

In this paper the performance of two compression methods for SAR images, based on an overcomplete Independent Component Analysis and on a Compressive Sampling approach are analyzed. The two approaches are analyzed and compared on different set of real SAR COSMO-SkyMed data. Keywords-Synthetic Aperture Radar; Compression; Independent Component Analysis; Compressive Sampling

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressed sensing based compression of SAR raw data

Due to their noise-like features, SAR images are difficult to acquire with compressed sensing techniques. However, some parts of the images, typically associated to man-made structures, are compressible and we investigate two techniques exploiting that information to allow a compressive acquisition of the whole image. These techniques result in a significant enhancement of the image quality com...

متن کامل

Quadrature compressive sampling SAR imaging

This paper presents a quadrature compressive sampling (QuadCS) and associated fast imaging scheme for synthetic aperture radar (SAR). Different from other analog-to-information conversions (AIC), QuadCS AICs using independent spreading signals sample the SAR echoes due to different transmitted pulses. Then the resulting sensing matrix has lower correlation between any two columns than that by a...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

Data Acquisition and Processing of Parallel Frequency Sar Based on Compressive Sensing

Traditional synthetic aperture radar (SAR) utilizes Shannon-Nyquist theorem for high bandwidth signal sampling, which induces a complicated SAR system, and it is difficult to transmit and process a huge amount of data caused by high A/D rate. Compressive sensing (CS) indicates that the compressible signal using a few measurements can be reconstructed by solving a convex optimization problem. A ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013